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1. 

The dynamic analysis of cylindrical shells has attracted the attention of many
researchers. For example, Prasad and Jain [1] investigated the free vibration
problem of finite cylindrical shells, Chou and Achenbach [2] stuided the
three-dimensional vibration problem of orthotropic cylinders, and Heyliger and
Jilani [3] considered the free vibration of inhomogeneous elastic cylinders
and spheres. With no initial assumptions regarding stress and deformation
models, the three vibration problems of simply supported homogeneous
isotropic, orthotropic, and laminated thick cylindrical shells were solved by
Soldatos et al. [4–6]. In Soldatos’ papers, the thick shells were divided into
N fictitious subcylinders in order to simplify the variable coefficient differential
equations into a set of simpler ones that was solved by using a method of
successive approximations. Recently, based on the analysis developed in
references [4–6], three-dimensional vibrations of laminated cylinders and
cylindrical panels with a symmetric or an antisymmetric cross-ply lay-up and
three-dimensional static, dynamic, thermoelastic and buckling analysis of
homogeneous and laminated composite cylinders have been studied by
Soldatos and Ye [7, 8]. A successive approximation approach was oulined
by Soldatos [8] which is suitable for corresponding analyses of hollow
cylinders having fixed edge boundaries. Ding et al. [9] gave the exact solution
for axisymmetric vibration and buckling of laminated cylindrical shells having
a simply supported edge boundary, by means of the state–space method.

To the authors’ knowledge, the exact free vibration analysis for the quite
thick cylindrical shell with clamped edges is so difficult that few references have
been found. In this paper however, by introducing the Hellinger–Reissner
variational principle, the mixed state Hamilton equations are presented.
A three-dimensional solution is expressed for the free vibration problem of
thick laminated closed cylindrical shells with two clamped edges by means
of a transfer matrix and the successive approximation method [4]. Numerical
results are obtained and compared with those of FEM calculated using
SAP5.
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2.   

The transient Hellinger–Reissner variational principle can be shown to be of the
form
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in which the usual index notation is used. Ss and Su denote respectively the portion
of the edge boundary where tractions p̄i are prescribed and where displacements
ūi are prescribed. The quadratic form of the Hamilton function H can be written
as

−H= sx
1u
1x

+ su0wr +
1
r

1v
1u1+ txu01v

1x
+

1
r

1u
1u1+ tru01r 1w

1u
−

v
r1+ trx

1w
1x

−1
2r001u

1t1
2

+01v
1t1

2

+01w
1t1

2

1− 1
2{s}T[C]−1{s}

where r is the mass density and the matrix [C] is the elastic stiffness matrix.
Using dP*=0, and denoting

q=(ru, rv, rw)T, p=(trx tru sr ), F=(q, p),

the following relations can be obtained
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This is the classical Hamilton canonical equation [10].
For a clamped shell, the length of the shell is l, the radius of the outer and, inner

surfaces are a and b, respectively. We introduce

u= ux +01−
x
l1ū(0)

(u,r,t) +
x
l
ū(l)

(u,r,t), (3)

in which ū(0)
(u,r,t) and ū(l)

(u,r,t) are unknown coefficients at x=0, l, respectively.
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Expand the quantities into the following series system (z=mp/l)
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Considering equations (3) and (4), it can be seen that on x=0, l, w= v=0. The
remainding boundary conditions that must be satisfied are

u=0, on x=0, l. (6)

Because sx , su and txu are discontinuous variables at interfaces by first eliminating
them from equations (2) then introducing equations (3), (4) and (5) into equation
(2), and letting

C1 =−C13/C33, C2 =C11 −C2
13/C33, C3 =C12 −C13C23/C33,

C4 =C22 −C2
23/C33, C5 =−C23/C33, C6 =C66, C7 =1/C33,

C8 =1/C55, C9 =1/C44

this yields for each combination of m and n:

d
dr

Fmn (r)=D(r)Fmn (r)+B(r), (7)
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where
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Equation (7) is called a variable coefficient non-homogenous mixed state equation.

3.      

Considering a p-plied laminated thick cylindrical shell made up of orthotropic
layers. The length and the thickness of the shell are l and h (=a− b) respectively.
Divide the laminated shell into k thin plies. The thickness of each thin ply is
hi = h/k, and its middle radius is denoted by c1, c2, . . . , ck , respectively.

Because r has a little variation in the thin ply, one can substitute ci

(i=1, 2, . . . , k) for the variable r in matrix (8), which will not result in significant
errors. If each layer of the laminated shell is quite thin, one only needs to substitute
the middle radius of each layer for r in the matrix (8). However, when some layers
are thick, one may divide the layers into k and k+1 thin plies. If we find from
calculation that the needful effective digits hardly change, it can be said that the
results obtained with k thin plies are exact within the prescribed accuracy limits.
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Provided the ply is thin enough, it is reasonable that the ū(0)
(r) and ū(l)

(r) are considered
as linear functions in the thin ply. (Babuska et al. [11] gave a much more efficient
method in the thickness direction.)

The solution of equation (7) is

F(r)=G(r− a)F(a)+C(r− a), (9)

where

G(r− a)= exp[D(r− a)], C(r− a)=g
r

a

exp[D(r− t)B(t)] dt. (10)

By virtue of the continuity conditions for displacements and stresses at interfaces,
the mechanical quantities of the inner and outer surfaces for the entire laminated
shell can be linked together to be of the form

F(b)=PF(a)+P� , (11)

where

P=G(−hk )G(−hk−1)G(−hk−2) · · G(−h2)G(−h1),

P� =G(−hk ) s
k−1

j=1 $ t
j+1

i= k−1

G(−hi )C(−hj )%+C(−hk ).

F(b) and F(a) in equation (11) are the mechanical quantities for the interior and
outer surfaces of the laminated shell, respectively. In the calculation of natural
frequencies, considering the boundary condition of the inner and outer surfaces
of the shell, one has

sr,mn (a)= trx,mn (a)= tru,mn (a)= sr,mn (b)= trx,mn (b)= tru,mn (b)=0. (12)

In order to satisfy the boundary condition (6) of the shell with clamped edges,
it is necessary to write the expression of ux,mn (r). In imitation of the deductive
process of equation (11), the mechanical quantities in the ith thin ply of laminated
shell can be expressed by F(a):

F(ri )=PiF(a)+P� i . (13)

The meaning of the Pi and P� i are similar to those in equation (11).
By selecting the first rows of equation (13), and considering boundary conditions

(6), for each m and n, and letting r= ri in condition (6), then four equations about
unknown coefficients are obtained. When i=1, 2, . . . , k, there are altogether
2(k+1) linear homogeneous algebraic equations. It makes coefficients
determinant of those equations equal to zero, thus the frequency equation can be
obtained.
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T 1

Frequency parameters V for single-ply and three-plied laminated shells

SAP5
Present (single-ply)

SAP5
Present (three-plied)

ZXXXXCXXXXV ZXXXXCXXXXV
h/R0 V1 V1 V2 V3 V1 V1 V2 V3

0·2 0·0435 0·0459 0·2075 1·6447 – – – –
0·4 0·0896 0·0918 0·4076 1·7130 – – – –
0·8 – – – – 0·1975 0·2081 0·8034 1·6402
1·0 – – – – 0·2559 0·2601 0·9272 1·7381

V=vhzr2/C(2)
11 .

4.  

Example. A three-plied closed laminated cylindrical shell is used. The materials
of the first and third layers are identical. Each layer has the same elastic constants:

C12/C11 =0·246269, C13/C11 =0·0831715, C22/C11 =0·543103,

C23/C11 =0·115017, C33/C11 =0·530172, C44/C11 =0·266810,

C55/C11 =0·159914, C66/C11 =0·262931, C(1)
11 /C(2)

11 =5,

where C(1)
11 and C(2)

11 denote C11 of the materials corresponding to the first and second
layer, respectively. The densities for the outer and middle layers are denoted by
r1 and r2, respectively. The laminated shell has the following geometry parameters:

h1 = h3 =0·1h, h2 =0·8h, l= s=2pR0,

where l=the length of the shell, s=the arc length of the middle surface, R0 = the
radius of the middle surface, h1, h2 and h3 are the thicknesses of the outer, middle
and interior layers, resepctively.

When m= n=1, the first three natural frequencies for the single-ply shell and
the three-plied shell (r1/r2 =3) are indicated in Table 1. The results for the
three-dimensional FEM using SAP5 with 64 isoparametric elements (for 1/4 shell)
with 16 nodes are also given in Table 1.

5. 

A three-dimensional solution for the free vibration problem is investigated.
Exact frequencies are also given for thick laminated closed cylindrical shells with
two clamped edges. The principle and method suggested here have clear physical
concepts and can also handle more general boundary conditions. The present
study satisfies the continuity conditions of stresses and displacements at the
interfaces. Numerical results denote that the method adopted in this paper is an
efficient one.
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